PPAR gamma agonist normalizes glomerular filtration rate, tissue levels of homocysteine, and attenuates endothelial-myocyte uncoupling in alloxan induced diabetic mice

نویسندگان

  • Walter E. Rodriguez
  • Utpal Sen
  • Neetu Tyagi
  • Munish Kumar
  • Gene Carneal
  • Deep Aggrawal
  • Justin Newsome
  • Suresh C. Tyagi
چکیده

BACKGROUND Homocysteine (Hcy) is an independent cardiovascular risk factor; however, in diabetes, the role of tissue Hcy leading to cardiac dysfunction is unclear. AIMS To determine whether tissue Hcy caused endothelial-myocyte uncoupling and ventricular dysfunction in diabetes. METHODS Diabetes was created in C57BL/6J male mice by injecting 65 mg/kg alloxan. To reverse diabetic complications, ciglitazone (CZ) was administered in the drinking water. Plasma glucose, Hcy, left ventricular (LV) tissue levels of Hcy and nitric oxide (NO) were measured. Glomerular filtration rate (GFR) was measured by inulin-FITC. Endothelial-myocyte coupling was measured in cardiac rings. In vivo diastolic relaxation and LV diameters were measured by a Millar catheter in LV and by M-mode echocardiography, respectively. RESULTS Plasma glucose, GFR and LV tissue Hcy were increased in diabetic mice and were normalized after CZ treatment; whereas, elevated plasma Hcy level remained unchanged with or without CZ treatment. NO levels in the LV were found inversely related to tissue Hcy levels. Attenuated endothelial-myocyte function in diabetic mice was ameliorated by CZ treatment. Cardiac relaxation, the ratio of LV wall thickness to LV diameter was decreased in diabetes, and normalized after CZ treatment. CONCLUSION CZ normalized LV tissue levels of Hcy and ameliorated endothelial-myocyte coupling; therefore, specifically suggest the association of LV tissue Hcy levels with impair endothelial-myocyte function in diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homocysteine and Hypertension in Diabetes: Does PPARγ Have a Regulatory Role?

Dysfunction of macro- and microvessels is a major cause of morbidity and mortality in patients with cardio-renovascular diseases such as atherosclerosis, hypertension, and diabetes. Renal failure and impairment of renal function due to vasoconstriction of the glomerular arteriole in diabetic nephropathy leads to renal volume retention and increase in plasma homocysteine level. Homocysteine, whi...

متن کامل

Synergism in hyperhomocysteinemia and diabetes: role of PPAR gamma and tempol

BACKGROUND Hyperhomocysteinemia (HHcy) and hyperglycemia cause diabetic cardiomyopathy by inducing oxidative stress and attenuating peroxisome proliferator- activated receptor (PPAR) gamma. However, their synergistic contribution is not clear. METHODS Diabetic Akita (Ins2+/-) and hyperhomocysteinemic cystathionine beta synthase mutant (CBS+/-) were used for M-mode echocardiography at the age ...

متن کامل

Pioglitazone mitigates renal glomerular vascular changes in high-fat, high-calorie-induced type 2 diabetes mellitus.

Our hypothesis is that impairment of peroxisome proliferator-activated receptor-gamma (PPARgamma) initiates renal dysfunction by increasing renal glomerular matrix metalloproteinase-2 (MMP-2) activity because of increased renal homocysteine (Hcy) and decreased nitric oxide (NO) levels. C57BL/6J mice were made diabetic (D) by being fed a high-fat-calorie diet, and an increase in PPARgamma activi...

متن کامل

Early Renal Histological Changes in Alloxan-Induced Diabetic Rats

Diabetes mellitus is a progressive disease. Most investigators have focused on glomerular changes in diabetic kidney and non-glomerular alterations have been less attended. The present study has been conducted to find early non-glomerular histological changes in diabetic renal tissue. Twenty male Wistar rats weighting 200-250 g were used for the diabetic group. Diabetes mellitus was induced by ...

متن کامل

Protection of podocytes from hyperhomocysteinemia-induced injury by deletion of the gp91phox gene.

In this study, mice lacking the gp91(phox) gene were used to address the role of NADPH oxidase in hyperhomocysteinemia-induced podocyte injury. It was found that a folate-free diet increased plasma homocysteine levels, but failed to increase O(2)(-) production in the glomeruli from gp91(phox) gene knockout (gp91(-/-)) mice, compared with wild-type (gp91(+/+)) mice. Proteinuria and glomerular da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Biological Sciences

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2008